Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38012113

RESUMO

Studies of plant-microbe interactions, including mutualistic, antagonistic, parasitic, or commensal microbes, have greatly benefited our understanding of ecosystem functioning. New molecular identification tools have increasingly revealed the association patterns between microorganisms and plants. Here, we integrated long-read PacBio single-molecule sequencing technology with a blocking protein-nucleic acid (PNA) approach to minimise plant amplicons in a survey of plant-eukaryotic microbe relationships in roots and leaves of different aquatic and terrestrial plants to determine patterns of organ, host, and habitat preferences. The PNA approach reduced the samples' relative amounts of plant reads and did not distort the fungal and other microeukaryotic composition. Our analyses revealed that the eukaryotic microbiomes associated with leaves and roots of aquatic plants exhibit a much larger proportion of non-fungal microorganisms than terrestrial plants, and leaf and root microbiomes are similar. Terrestrial plants had much stronger differentiation of leaf and root microbiomes and stronger partner specificity than aquatic plants.


Assuntos
Microbiota , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Plantas/microbiologia , Folhas de Planta/microbiologia , Peptídeos , Raízes de Plantas/microbiologia
2.
J Environ Manage ; 345: 118879, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659362

RESUMO

Restoring peatland ecosystems involves significant uncertainty due to complex ecological and socio-economic feedbacks as well as alternative stable ecological states. The primary aim of this study was to investigate to what extent the natural functioning of drainage-affected peat soils can be restored, and to examine role of soil microbiota in this recovery process. To address these questions, a large-scale before-after-control-impact (BACI) experiment was conducted in drained peatland forests in Estonia. The restoration treatments included ditch closure and partial tree cutting to raise the water table and restore stand structure. Soil samples and environmental data were collected before and 3-4 years after the treatments; the samples were subjected to metabarcoding to assess fungal and bacterial communities and analysed for their chemical properties. The study revealed some indicators of a shift toward the reference state (natural mixotrophic bog-forests): the spatial heterogeneity in soil fungi and bacteria increased, as well as the relative abundance of saprotrophic fungi; while nitrogen content in the soil decreased significantly. However, a general stability of other physico-chemical properties (including pH remaining elevated by ca. one unit) and annual fluctuations in the microbiome suggested that soil recovery will remain incomplete and patchy for decades. The main implication is the necessity to manage hydrologically restored peatland forests while explicitly considering an uncertain future and diverse outcomes. This includes their continuous monitoring and the adoption of a precautionary approach to prevent further damage both to these ecosystems and to surrounding intact peatlands.


Assuntos
Florestas , Microbiota , Incerteza , Árvores , Solo
3.
Oecologia ; 197(3): 807-816, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34657178

RESUMO

In production forests, a common silvicultural objective is enhancing tree growth rates. The growth rate influences both mechanical and biochemical properties of wood, which may have an impact on dead wood inhabiting (i.e. saproxylic) species. In this study, we tested for the first time whether tree growth rates affect dead-wood associated assemblages in general and the occurrence of red-listed species in particular. We sampled saproxylic beetles (eclector traps) and fungi (DNA metabarcoding of wood samples) in dead trunks of Norway spruce (Picea abies), which had different growth rates within the same hemiboreal forests in Sweden. A high proportion of fungi showed a positive association to increasing tree growth. This resulted in higher fungal richness in fast-grown trees both at the trunk scale and across multiple studied trunks. Such patterns were not observed for saproxylic beetles. However, a set of species (both beetles and fungi) preferred slow-grown wood. Moreover, the total number of red-listed species was highest in slow-grown trunks. We conclude that dead wood from slow-grown trees hosts relatively fewer saproxylic species, but a part of these may be vulnerable to production forestry. It implies that slow-grown trees should be a target in nature conservation. However, where slow-grown trees are absent, for instance in forests managed for a high biomass production, increasing the volumes of dead wood from fast-grown trees may support many species.


Assuntos
Besouros , Árvores , Animais , Ecossistema , Agricultura Florestal , Florestas
4.
Mycol Prog ; 18(1-2): 77-89, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31662730

RESUMO

Three new species, closely related to Sphaerostilbella broomeana, are described from the USA and India. These species form septate conidia from simple conidiophores with individual branches terminating in a single phialide and chlamydospores. Teleomorphs, known for S. broomeana and S. appalachiensis, are characterised by hairy perithecia and fusiform, apiculate, and conspicuously warted ascospores. This combination of characters distinguishes the S. broomeana-group from other members of Sphaerostilbella that all form gliocladium-type anamorphs and mostly grow on basidiomata of Stereum spp. Like in other species of the genus, the majority of hosts of the species described in this paper belong to wood-inhabiting taxa of Russulales. Sphaerostilbella broomeana had been recorded from a few regions in Europe and exclusively on Heterobasidion annosum. Herein, it is reported also from H. parviporum in many other localities and on H. insulare s.l. at the foothills of the Himalayas. Its sister species, found in the same region in northern India on another member of Russulales (Dichostereum effuscatum), is described as S. himalayensis. The two species described from North America colonize polypores from various taxa. Whereas S. appalachiensis occurs in eastern USA, with H. irregulare among its hosts, S. toxica is so far known only from two locations in eastern Texas, growing on Gloeophyllum striatum (Polyporales). Despite their great similarity in morphology and ITS rDNA, TEF1 sequences clearly distinguish these two North-American species. Moreover, the two strains of S. toxica appeared metabolically distinct as their organic extracts strongly inhibited the growth of human pathogenic microbes grown in vitro. Phylogenetic analysis of rDNA sequences supports monophyly of the genus Sphaerostilbella and the included S. broomeana-group, established here.

5.
Fungal Biol ; 117(5): 348-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23719221

RESUMO

Temperate species of Hypomyces and Cladobotryum that produce the red pigment aurofusarin are common on agaricoid and polyporoid basidiomata of species from five orders of Agaricomycetes. Several cause cobweb disease of commercially cultivated mushrooms resulting in serious losses. We sequenced rpb1, rpb2, tef1, and FG1093 regions in 90 wild strains and 30 strains from mushroom farms, isolated from Europe, North America, Africa, Asia, Australia, and New Zealand. Multigene analyses support the distinctness of five species but reveal Hypomyces rosellus to be paraphyletic, comprising several cryptic lineages. Hypomyces rosellus s. str. is characterised by wide dispersal and gene flow across Eurasia but does not occur in North America. Instead, the lineages from the West and the East Coast appear distinct, having given rise to species inhabiting the Southern Hemisphere. Our results reveal wide misuse of the name H. rosellus, especially for cobweb isolates. The majority of these belong to Hypomyces odoratus, including a weakly supported group of fungicide-resistant strains from Europe and North America sharing identical sequence data. New collections are presented for Cladobotryum rubrobrunnescens and Cladobotryum tenue as well as Cladobotryum multiseptatum and Hypomyces dactylarioides, all previously known only from their type material. The former species pair occurs in Europe and the latter in Australia and New Zealand. Separate lineages appear to be maintained by geographic isolation in North America and temperate Australasia but by host specialisation in the species occurring sympatrically in Europe and Asia. Both specialist and generalist host use strategies have evolved in the group. Although teleomorphs are known in most of the species and unnamed lineages, analyses of the five-gene regions suggest the prevalence of clonal reproduction in H. odoratus. This can be the reason for its success in mushroom farms, also facilitating the spread of fungicide resistance. While tef1 and rpb2 can be recommended for species delimitation, low variation, not exceeding 1 % in the whole ingroup, impeaches the use of ITS as a barcoding gene region in this group of fungi.


Assuntos
Agaricales/fisiologia , Hypocreales/genética , Hypocreales/metabolismo , Naftoquinonas/metabolismo , Verduras/microbiologia , Biodiversidade , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Variação Genética , Interações Hospedeiro-Patógeno , Hypocreales/classificação , Hypocreales/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Doenças das Plantas
6.
Environ Microbiol ; 11(12): 3166-78, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19671076

RESUMO

Mycorrhizosphere microbes enhance functioning of the plant-soil interface, but little is known of their ecology. This study aims to characterize the ascomycete communities associated with ectomycorrhizas in two Tasmanian wet sclerophyll forests. We hypothesize that both the phyto- and mycobiont, mantle type, soil microbiotope and geographical distance affect the diversity and occurrence of the associated ascomycetes. Using the culture-independent rDNA sequence analysis, we demonstrate a high diversity of these fungi on different hosts and habitats. Plant host has the strongest effect on the occurrence of the dominant species and community composition of ectomycorrhiza-associated fungi. Root endophytes, soil saprobes, myco-, phyto- and entomopathogens contribute to the ectomycorrhiza-associated ascomycete community. Taxonomically these Ascomycota mostly belong to the orders Helotiales, Hypocreales, Chaetothyriales and Sordariales. Members of Helotiales from both Tasmania and the Northern Hemisphere are phylogenetically closely related to root endophytes and ericoid mycorrhizal fungi, suggesting their strong ecological and evolutionary links. Ectomycorrhizal mycobionts from Australia and the Northern Hemisphere are taxonomically unrelated to each other and phylogenetically distant to other helotialean root-associated fungi, indicating independent evolution. The ubiquity and diversity of the secondary root-associated fungi should be considered in studies of mycorrhizal communities to avoid overestimating the richness of true symbionts.


Assuntos
Ascomicetos/classificação , Micorrizas/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Biodiversidade , Ecossistema , Micorrizas/genética , Micorrizas/isolamento & purificação , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 28S/metabolismo , Microbiologia do Solo
7.
Nucleic Acids Res ; 35(Database issue): D332-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17090588

RESUMO

Three independent databases of eukaryotic genome size information have been launched or re-released in updated form since 2005: the Plant DNA C-values Database (www.kew.org/genomesize/homepage.html), the Animal Genome Size Database (www.genomesize.com) and the Fungal Genome Size Database (www.zbi.ee/fungal-genomesize/). In total, these databases provide freely accessible genome size data for >10,000 species of eukaryotes assembled from more than 50 years' worth of literature. Such data are of significant importance to the genomics and broader scientific community as fundamental features of genome structure, for genomics-based comparative biodiversity studies, and as direct estimators of the cost of complete sequencing programs.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Genoma de Planta , Genoma , Animais , DNA de Plantas/química , Genômica , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...